
Architecture and Data Model of a WebDAV-based
Collaborative System

Sunghun Kim, Kai Pan, Elias Sinderson, E. James Whitehead, Jr.
Dept. of Computer Science

Baskin Engineering
University of California, Santa Cruz

Santa Cruz, CA 95064 USA

{hunkim, pankai, elias, ejw}@cs.ucsc.edu

ABSTRACT

Web Distributed Authoring and Versioning (WebDAV, or
DAV for short) is a suite of protocol extensions to HTTP/1.1
which support collaborative authoring. The development of the
WebDAV protocol has explored the hypothesis that an authoring
protocol built on HTTP is the best way to deploy collaborative
authoring protocol capability. For three and half years, WebDAV
and its many implementations have provided a strong indication
that this hypothesis is correct. More recently, DeltaV and DASL
are exploring a similar hypothesis that an HTTP-based protocol is
the best way to deploy searching, versioning, and Software
Configuration Management (SCM) capabilities. However, due to
the protocol's complexity and lack of reference implementations,
there are few DeltaV/DASL implementations and scarce publicly
available information on architectures and data models for such
implementations. Our key contribution is an architecture for
performing DeltaV versioning and DASL searching operations
within the context of the Apache web server. We also present the
relational database schema used to represent the DeltaV/DASL
data model. As a verification of the architecture and database
schema, we implemented Catacomb, an open source
WebDAV/DeltaV/DASL server. The Catacomb design and
implementation are offered as a reference architecture for
DASL/DeltaV servers.

Keywords

Web Infrastructure, Collaborative Applications, Design of
Collaborative Systems, Interfaces for Collaborative Work.

1. INTRODUCTION

It is common to collaborate on a project with several people
in different geographical locations. What is a good collaborative
system to support such a project? A network-accessible server is
required that provides namespace management to create
directories, copy and move files, and a common mechanism for
overwrite protection to avoid the “lost update problem.” Metadata
management is also desirable, to set metadata properties such as
author, keyword, or copyright information, as is versioning, to
record the various states in the evolution of a resource.
Furthermore, the ability to search for a resource among many
other resources is very useful.

WebDAV [1, 2], generally, is a suite of extensions to the
HTTP/1.1 protocol, which fulfill the above requirements [3, 4].
The core WebDAV protocol explores the hypothesis that an

application layer protocol, built on HTTP, is the best way to
deploy collaborative authoring capabilities, in an interoperable
manner, into today’s applications and content management
servers. DASL [4] and DeltaV [5], address similar questions for
searching and versioning, respectively. For three and half years,
WebDAV and its many client and server implementations –
including Apache, Microsoft Internet Information Server,
Microsoft Office, Adobe Photoshop, Internet Explorer, and Dream
Weaver, among others – have largely proven that this hypothesis
is correct [5]. One of the key benefits of the WebDAV, DeltaV
and DASL protocols is that they provide a standard mechanism
for accessing and manipulating resources.

The DASL protocol extends WebDAV with searching and
locating capabilities [6]. Development of DASL is ongoing,
currently available as an Internet draft. The DeltaV protocol
extends WebDAV with versioning and Software Configuration
Management (SCM) capabilities. It was approved as an IETF
Proposed Standard specification in March 2002 [5, 7]. Due to the
complexity of the specifications and lack of reference
implementations, there are few DeltaV/DASL implementations
and no open architectural or data models for such
implementations. This paper presents an overview of the
DeltaV/DASL protocol and a reference architecture that supports
DeltaV/DASL versioning operations within the context of the
Apache server. We also show the relational database schema used
to represent the DeltaV/DASL data model. To verify the models
and the data schema, we implemented Catacomb, an open source
WebDAV/DeltaV/DASL server.

There are several contributions made by the Catacomb
project. The relational database implementation of the
DeltaV/DASL data model, which differs from traditional
versioning data models such as RCS [8], acts as a reference for
other DeltaV/DASL implementations. Secondly, it provides an
example of how the WebDAV/DeltaV/DASL methods are used
for collaborative authoring, searching and basic versioning of
resources. Finally, the development of an open source, database-
backed distributed authoring, searching, and versioning system is
a valuable contribution to many communities who will not have to
reproduce this effort themselves.

The rest of this paper is organized as follows: Section 2
provides some background on the WebDAV protocol suite,
Apache2, and Catacomb. In section 3 we examine related work,
including XQuery [9] Z39.50 [10], RCS [8], WWRC [11], CVS
[12] and Subversion [13], drawing comparisons where
appropriate. Section 4 describes the design and implementation of

ISBN: 1-56555-272-5 48 CTS ’04

mailto:hunkim@cs.ucsc.edu, pankai@cs.ucsc.edu, elias@cs.ucsc.edu, ejw@cs.ucsc.edu

DeltaV basic versioning and DASL basic searching functionality
within Catacomb, and section 5 discusses future work this area
and concludes.

2. BACKGROUND

Before we dive into the data model, design, and
implementation issues, we provide some background on the
WebDAV protocol suite and WebDAV-related servers. In this
section, we briefly introduce the WebDAV, DeltaV and DASL
protocols implemented in Catacomb, and describe the Apache
server and the Apache mod_dav module, which provides the
server framework for Catacomb.

2.1 WebDAV

WebDAV is a suite of protocol extensions to HTTP/1.1
which support collaborative authoring (depicted in figure 1),
namespace management of resources, setting and retrieving of
metadata properties, access control, and resource versioning on
remote web servers [1, 14]. The suite includes the DeltaV [5],
DASL[6], ACL [15], Binding [16], Redirect Reference Resources
[17], Ordered Collections [18], and WebDAV core [1] protocols.
In this paper, the WebDAV protocol refers to the WebDAV core
protocol.

The core WebDAV protocol defines seven new HTTP/1.1
methods, providing functionality in four main areas: resource
management, metadata management, concurrency control, and
resource namespace manipulation [1]. The PUT and DELETE
methods defined in HTTP/1.1 are used for resource management
[1]. The PUT method creates a new resource, while the DELETE
method deletes a resource in the WebDAV server.

WebDAV
server

A

Johnathan

Word
2000

BOSTON LOS ANGELES

shared document

Katrina

Word
2000

TOKYO

Kenji

Word
2000

HTTP/DAV HTTP/DAV

HTTP/DAV

Figure 1. Three collaborators, at different sites, are jointly
authoring a document using the WebDAV capabilities of
Microsoft Word 2000/XP. Word uses the WebDAV protocol
to interact with the shared document, stored on a WebDAV
server in the Los Angeles office. Authoring takes place using
turn taking, and is not simultaneous.

For the metadata management, the WebDAV protocol
provides a notion of properties (metadata). A property is an
arbitrary name and value pair, where a name is an XML
namespace URL/path pair and a value is a sequence of well-
formed XML. Using the PROPPATCH method, we can set one or
more properties for a resource. The PROPFIND method lists and
discovers the properties of resources. PROPFIND also lists the
membership of collections.

Within the context of collaborative authoring, it is possible
that two or more people can edit or update the same resource on
the same server at the same time and one of the changes may
overwrite the other. In order to avoid the resource overwriting (or
lost update) problem referred to above, one can use the LOCK
method. If a user locks a resource, the WebDAV server provides a
lock token and only the owner of this lock token is able to modify
the resource. The UNLOCK method releases a lock. The MKCOL
method creates a collection, a notion which is similar to a
directory in a filesystem. The MOVE and COPY methods are
used to move or copy resources from one collection to another.
Together, these methods permit manipulation of the resource
namespace.

2.2 DeltaV

Using WebDAV, we can create and update resources on
WebDAV servers. DeltaV extends WebDAV by providing
versioning functionality to the protocol stack. The DeltaV
protocol defines eleven methods, and related properties, to
provide a variety of versioning features [5]. There are two levels
of versioning support, basic and advanced. Basic versioning
enables users to check in, check out, create new revisions,
discover revisions, and access each revision. Workspaces, parallel
development, and configuration management functionality are
specified in the advanced versioning portion of the specification,
which we will not go into here due to space constraints.

The VERSION-CONTROL method puts a resource under
version control. A Version Controlled Resource (VCR) has an
associated version history resource, which contains version
history information about the resource. The basic versioning
model of DeltaV is a linear versioning model (depicted in figure
2), where each version of a resource has its own URL. To ensure
that authors have a stable URL to use for editing, the most recent
version of a VCR always has the same URL. In the linear
versioning model, branching is not permitted and, hence, multiple
simultaneous CHECKOUTs of a resource are not allowed. Thus,
if another client wants to work on the same resource, the client
must wait until the resource is checked back in.

/repos/luca.html
0

1

3

2

initial

Alpha

URL path of
Versioned
Controlled
Resource

Line of
Descent

Revision
History

Release

/repos/luca.html
0

1

3

2

initial

Alpha

URL path of
Versioned
Controlled
Resource

Line of
Descent

Revision
History

Release

Figure 2. DeltaV basic versioning model. The latest version of
the resource will always be accessed via the URL path
/repos/luca.html.

With advanced versioning, one can create workspaces on the
server and can CHECKOUT the resource into the workspace.
This allows for parallel development activities among
collaborators. Branching and multiple checkout functions require
merge operations. In a DeltaV server, each resource can change
separately so we need to be able to capture the state of each
resource at a given time. A configuration is used to capture the

ISBN: 1-56555-272-5 49 CTS ’04

state of each version-controlled resource in a project. DeltaV
introduces a baseline version resource which captures the
essentials of a configuration. The baseline version resource
concept provides configuration management capability.

The Catacomb server implements the basic versioning
functionality of DeltaV. Advanced versioning functionality is not
currently implemented due to its complexity. The implementation
of basic versioning is the first step towards implementing the full
DeltaV feature set and is sufficient to demonstrate the database
representation of the DeltaV data model, which will be leveraged
and extended to support advanced versioning.

2.3 DASL

The DAV Searching and Locating (DASL) protocol is an
extension to the WebDAV protocol, consisting the SEARCH
method, the DASL response header, the <DAV:searchrequest>
XML element, the <DAV:basicsearch> XML element and query
grammar, the <DAV:queryschema> property, and the
<DAV:basicsearchschema> element. While WebDAV and HTTP
protocols provide a limited resource locating mechanism, the
DASL protocol provides support for client specified, server-
executed queries to locate resources based on WebDAV
properties and text content.

The basic lifecycle of a SEARCH request is as follows. First
the client constructs an XML DASL query using the desired
search grammar. After constructing the DASL query, the client
invokes the SEARCH method on a search arbiter, a resource that
performs the search on the client’s behalf, and includes the query
in the request body. The arbiter then executes the query and sends
the results back to the client in the body of the response. The
text/xml MIME type is used for both the request and response
bodies. The response body must conform to the PROPFIND
response body, as specified for the WebDAV protocol
specification [1].

A DASL query consists of 5 parts, the result record
definition, search scope, search criteria, sort specification, and
search limits [6]. The result record definition defines which
properties are returned in a result record (DAV:select). The search
scope part indicates the set of resources to be searched
(DAV:from). The search criteria contain an expression against
which each resource in the search scope is evaluated
(DAV:where). The sort specification defines the sort order of the
result set (DAV:orderby). The search limits indicate a bound on
the number of result records in result set.

2.4 Mod_dav

Apache is a well-known open source web server [19].
Apache is an exceptionally modular server, so much so that even
core HTTPD parts such as request handling and protocol handling
are implemented as separate Apache modules. This flexible
architecture enables developers to develop various third party
modules that add new functionality to the Apache server, and
today there are more than three hundred Apache modules [20].

Mod_dav is a built-in Apache module that supports the
WebDAV protocol suite [21]. Mod_dav_fs is a sub-module for
mod_dav which acts as an interface between the filesystem and
mod_dav. Mod_dav_fs stores resources as files in the filesystem
with properties stored in a separate file [22]. This filesystem

based data storage model is not well suited for implementing the
WebDAV protocol suite. It is expensive to open multiple content
and property files when handling SEARCH requests and cannot
efficiently represent the referential containment relationships
among VCRs, version history resources, and version resources as
required by the DeltaV data model.

2.5 Catacomb

Catacomb is a collaboration infrastructure technology that
supports the WebDAV, DeltaV, and DASL protocols. Catacomb
is an Apache module that enables mod_dav to use a relational
database for its storage layer [23]. Catacomb stores all resources
and properties in the database (currently MySQL). Since a
database is more flexible than a filesystem, it is straightforward to
implement searching and referential containment operations.
Catacomb supports the WebDAV core protocol [1, 5, 6] as well as
DeltaV basic versioning and the DASL basic search functionality,
described in section 4.

3. RELATED WORK

XQuery [9] is a functional query language for querying
XML documents and collections of these documents. XQuery is
more complex than SQL primarily because it contains many
constructs for dealing with nested structures, absent in SQL.
XQuery is also a language with a strong notion of typing [9].
Unlike SQL, which works on relational data, XQuery is designed
to perform queries on structured documents and collections of
these documents. SQL is sufficient for supporting relational data
search in DASL. If a DASL implementation wanted to support
searching of structured data, XQuery may be used in the server to
process requests that search over XML documents.

Z39.50 is a client/server based standard for information
retrieval [10]. Z39.50 specifies procedures and structures for a
client to search a database provided by a server, retrieve database
records identified by a search, scan a term list, and sort a result set
[10]. Z39.50 has goals similar to DASL for enhancing the
interoperability of information retrieval, but Z39.50 is different
from DASL in many ways. Z39.50 focuses on the database
resources, while DASL searches web resources. Furthermore,
Z39.50 is a connection-oriented protocol that uses a custom
syntax, while DASL is connectionless and leverages the HTTP
infrastructure. Finally, Z39.50 repositories typically do not
support arbitrary, user-defined (or dead) properties.

RCS is a source code version control system [8]. RCS is
focused on source code version control in the local filesystem.
There is no remote version control support in RCS and, in order to
use it, we need login access to the machine on which RCS is
installed. RCS uses an archive file to store version information.
For example, if we put a foo.c under version control, RCS creates
an archive file, foo.c,v and archives version history and delta
information into the archive file. With this data model, it is
difficult to control binary files or directory versions.

World Wide Revision Control (WWRC) extends version
control to the WWW environment [11]. WWRC is implemented
as a CGI program built on top of RCS. Using a generic web
browser and a customized application viewer, a user can use the
version control system through WWRC. Since the data model is
inherited from RCS, WWRC suffers the same limitations as RCS.

ISBN: 1-56555-272-5 50 CTS ’04

As an additional obstacle to widespread adoption, the WWW/CGI
style transaction method limits interoperability.

CVS addresses the remote access problem using its own
protocol [12]. CVS doesn't use a lock mechanism to prevent the
overwrite problem. CVS uses optimistic concurrency control
which allows concurrent editing, with merging of changes
occurring later. Still, CVS uses an RCS-like data model, so CVS
has difficulty when versioning binary files or directories.

James Hunt reported his experience implementing an early
pre-standardized version of the DeltaV protocol. He implemented
a DeltaV server on top of the Revision Control Engine (RCE)
[24], and his work focused on the mapping between DeltaV and
RCE. Since this work focused on mapping DeltaV to an existing
version control system, which doesn't support all of the functions
that DeltaV defines, the system is not scalable enough to support
the full DeltaV protocol.

Subversion is an open source version control system similar
to CVS [13]. The goal of the Subversion project is to build a
better version control system than CVS, but using the same user
interaction model. Subversion uses the WebDAV and DeltaV
protocols but is not a general-purpose WebDAV/DeltaV server, as
it uses several custom options and properties. Subversion sends
only deltas for PUT, a behavior not understood by general
purpose WebDAV clients. Further, Subversion doesn't support
LOCK and UNLOCK, which are basic WebDAV functions. As a
result, even though Subversion partially implements the DeltaV
protocol, its lessons are not completely generalizable for all
DeltaV implementations.

4. DESIGN AND IMPLEMENTATION

In this section, we present the design and implementation of
Catacomb. The database schema that represents the
DeltaV/DASL data model is described and we examine the
Catacomb architecture. Additionally, we explain the data
structures and interfaces between mod_dav and Catacomb, and
then describe the algorithm employed to parse DeltaV/DASL
requests and generate responses. We start by describing the
database design.

4.1 Database Design

Catacomb stores all contents and properties of resources into
a database since a database is much more flexible than a
filesystem. At first blush, it may seem that we could use a
filesystem and RCS style archive files instead of a database,
however a filesystem has several drawbacks. First of all, it is hard
to represent the WebDAV resource data model. WebDAV
resources consist of content and its properties. To store the
content and properties in a filesystem, each resource must have a
content file and a property file. It is hard to maintain the
consistency of these related files. PROPFIND with depth infinity
is resource intensive work in the filesystem since it requires
recursively browsing the filesystem. Implementing SEARCH is
very inefficient in a filesystem since it has to open all of the
content and property files to execute a query. Filesystems make it
complicated to represent the relationships between files within a
versioning data model. For example, version resources have a
relationship between root revision and child revisions or a
relationship between previous revision and next revisions.

In order to overcome the drawbacks of the filesystem,
Catacomb needs a flexible data storage system such as a relational
database. Search related operations can benefit from the
database's search capability, especially SQL, and a database can
easily represent complex relationships among resources.
Catacomb currently stores all resource content in the database to
support content searching. However, storing all contents in the
database is limited by the maximum data size for each data field.
For example, in MySQL 3, the maximum data size for each field
is 16M bytes [25]. We can solve this problem by storing content
as an external file or by dividing the content into smaller data
chunks and storing each piece separately. Since we were primarily
focusing on implementing DeltaV/DASL, we have left this
problem for future work.

URI
displayname
getcontentlanguage
getcontentlength
getcontenttype
getetag
getlastmodified
resourcetype
source
depth
istext
textcontent
bincontent
checkin
checkout
isversioned

serialno

serialno
ns_id
name

value

resource

property

serialno
version
displayname
getcontentlanguage
getcontentlength
getcontenttype
getetag
getlastmodified
resourcetype
source
depth
istext
textcontent
bincontent
author

version_resource

serialno
version
ns_id
name

value

version_property

Figure 3. Database schema for Catacomb. Key icons indicate
primary key fields. Version related tables and data fields are
shown in bold.

Two main database tables store the contents and properties of
resources. The resource table contains the resource content and
predefined properties specified in RFC 2518 [1]. The property
table is used to store user defined dead properties. The
relationship between the resource table and the property table is 1
to n. In order to support resource versioning, we use three fields in
the resource table. These version specific fields, checkin,
checkout, and isversioned, keep track of the state of a resource.
We use two tables, version_resource and version_property, to
store content of a version resource and its properties.

The version_resource table is a clone of the resource table,
and the version_property table is a clone of the property table.
There are several reasons to have separated resource and version
tables. The data fields in two tables may have different semantics.
For example, the textcontent field in the resource table contains
the content of a resource, but the textcontent field in the version
resource table may contain only a delta. Also note that most of
the WebDAV/DeltaV methods such as PUT, COPY, MOVE, and
PROPFIND need only the data present in the resource table. In
that sense, having two separated tables is helpful for Catacomb's
performance. For a version resource, we store the full content in
the textcontent field of version resource, although the database
schema is flexible to support storage of deltas if storage space is
an issue. The resource and property tables keep the latest version
of the resource content and its properties, while version_resource
and version_property tables keep the resource content and
properties of each revision. The relationship between resource and
version_resource is 1 to n, since each resource can have one or
more revisions.

ISBN: 1-56555-272-5 51 CTS ’04

4.2 DeltaV

Catacomb is a module for Apache2, so its architecture
depends on the Apache module architecture. Since Catacomb has
to communicate with mod_dav, the Catacomb module
conceptually lies under mod_dav. The basic architecture of
Apache, mod_dav, and Catacomb is shown below in figure 4. The
Apache core module handles HTTP requests and responses.
Mod_dav interprets WebDAV requests and passes the
information to lower-level modules such as mod_dav_fs or
Catacomb. Mod_dav gets some information back from the lower
module in order to send responses back to clients.

Version
Tables

Apache
Core

mod_http

mod_dav

...

...

mod_dav_fs

mod_dav_svn

File/ gdbm

Berkeley DB

DBMS

Catacomb
mod_dav
interface

DAV
DASL
logic

DBMS
Interface

Figure 4. Catacomb architecture. The shaded sections indicate
modules used to support versioning.

The Catacomb module receives request information
including the request URL, request method, and request message
from mod_dav. If PUT, PROPPATCH, LOCK, UNLOCK,
CHECKIN, or CHECKOUT methods are being handled, the
Catacomb module stores information into the database. To
support the DeltaV protocol, we added function hooks for
communicating with mod_dav. The DAV core module in
Catacomb was extended to understand the DeltaV requests and to
generate the DeltaV responses. The database module was also
extended to manipulate the new DeltaV database tables.

The Catacomb implementation process can be divided into
three parts: implementing the mod_dav versioning hooks, adding
database management capability, and adding DeltaV logic
modules. To get the DeltaV requests from mod_dav, we
implemented function hooks between mod_dav and Catacomb. In
between the mod_dav hooks and the database management
module, the DeltaV logic module manipulates the information,
and stores it into the database. In addition, the DeltaV logic reads
information from the database and sends it back to mod_dav. To
support the basic versioning functionality, Catacomb has to
understand the VERSION-CONTROL, REPORT, CHECKIN,
CHECKOUT, and UNCHECKOUT methods. The method
requests are parsed in mod_dav, which passes the request
information to Catacomb via the registered hooks.

The second part of the implementation is the DeltaV logic
module, which maintains the state of the resource, performing
actions based on that state and the request being processed. A
resource in Catacomb uses a state machine to model the current
versioning state and allowable transitions. The resource state
cycle is depicted in figure 5.

Checked
in

Checked
out

UNCHECKOUT

CHECKIN

UNCHECKOUT

Modified

Normal

VERSION-
CONTROL

PUT/PROPPATCH

Version controlled resourceResource

Delete
VHR CHECKOUT

Figure 5. Resource States in Catacomb
Initially a resource is in the normal state. If the client

requests the VERSION-CONTROL method, the state of resource
is changing to the version controlled state. All version controlled
resources are in the checked-in state at first. We checkout
resources in the checked-in state by using the CHECKOUT
method, which makes it possible to modify the resource. If a
resource is in the checked-in state, we cannot update the resource
until the resource is in the checked-out state. After a resource has
been checked out and updated using PUT or PROPPATCH, the
resource can be checked in.

At the moment of the CHECKIN request, the content and
properties of previous version resource are copied into the
version_resource and version_property tables in the database.
This action creates a version resource of the resource. Since the
version resource is read-only resource, the new version resource
preserves the content and properties of a resource when the
resource is checked in. If a resource is in checked-in state, the
resource and its latest version resource have the same content and
properties.

Each revision resource has a unique URL that is not
changeable. Catacomb creates the revision URL by combining the
root revision URL, version separator, version number, version
separator, and file name. For example, if a resource's root revision
URL is /repos/jim.html, the revision URL for revision number 2 is
/repos/jim.html/!/2/!/jim.html. Catacomb uses '/!/' as a version
separator, since it is rarely used in URI. The reason that Catacomb
uses the file name for the revision URL suffix is because many
WebDAV/DeltaV clients determine the content type of a resource
by looking the extension of the filename in the URL.

Several fields in the resource table are used to keep the status
of resource. The isversioned field in the resource table indicates
whether the resource is in the version controlled state. The
checkin and checkout fields in the resource table are used to keep
track of the version controlled resource state, as follows: one of
two fields contains the current version number and the other field
is set to -1 value. For example, if the checkin value is set to -1 and
checkout is set to 5, the resource is in the checked out state and
next version number is 5. If there is a CHECKIN request,
Catacomb creates a new version resource and its version number
is 5. After that, Catacomb increases the version number by one,
and flips the checkin and checkout values to indicate the state
change. The resource is in checked-in state and version number is
6.

ISBN: 1-56555-272-5 52 CTS ’04

Catacomb supports the auto-versioning function which is
specified in DeltaV. The auto-versioning function is an automatic
checkin/checkout function for generic WebDAV clients which do
not support DeltaV. For example, if the client tries to PUT or
PROPPATCH without CHECKOUT request, the server
automatically does CHECKOUT for PUT or PROPPATCH and
does CHECKIN after the PROPPATCH or PUT requests.

There are two ways to implement the auto-versioning
function: change-based and lock-based auto versioning. Change-
based auto-versioning function wraps a checkout/checkin pair
around every PUT or PROPPATCH method. Lock-based auto-
versioning performs a checkout when there is a LOCK request
and a checkin when there is a UNLOCK request. Change-based
auto-versioning creates a revision whenever the resource is
changed, so it has the possibility of creating more revisions than
strictly necessary. In order to avoid this, Catacomb supports only
lock-based auto-versioning.

4.3 DASL

The DASL logic module in Catacomb implements the
specific semantics of DASL operations. In the processing of a
SEARCH request, the mod_dav module and the mod_dav
interface components parse the WebDAV and DASL protocol
requests into operations on the repository. The DASL logic
component handles the SEARCH method. Particularly, the DASL
logic translates the XML DASL query in the body of a SEARCH
request into a SQL query that will be executed against the
database. Additionally, when the query results are returned, the
DASL logic component is responsible for converting the search
results into XML format, which will be put into the response
message. The DBMS interface provides DBMS APIs to handle
the resources and their properties in the database.

One major task of the DASL logic module in Catacomb is to
translate the XML DASL query in the SEARCH request into a
SQL query that will work on the ‘dasl_resource’ and
‘dasl_property’ tables in the database. The difficulty in translating
the DASL query is that dead properties are stored as rows in the
dasl_property table. This necessitates aliasing the dasl_property
table in the SELECT portion of the query and then using left join
operations to self-join the ‘dasl_property’ table to get the desired
results. Aliasing is an operation that allows one to refer to a table
by two names, allowing the dasl_property table to be effectively
used as multiple tables. A sample SEARCH request and its
corresponding SQL query are shown in Table 1.

In general, the major rules used in translating a DASL query
to a SQL query are as follows. Each live property in the result
record definition section of the DASL query goes to the SELECT
clause of the SQL query directly. For each dead property in the
result record definition section of a DASL query, add ‘t.name,
t.value’ to the select clause of the SQL query. Also, add ‘LEFT
JOIN dasl_property t USING (serialno)’ to the right of
‘dasl_resource’ in the FROM clause of the SQL query, and use
OR to connect the boolean expression ‘t.name = <dead property
name>’. Each logical expression on a live property in the search
criteria of the DASL query becomes part of the WHERE clause of
the SQL query. For each logical expression on a dead property in
the search criteria of the DASL query, add ‘LEFT JOIN
dasl_property <dead property name>_t USING (serialno)’ to the
end of the FROM clause of the SQL query. Further, add ‘AND

(<dead property name>_t.name = “<dead property name>” AND
<dead property name>_t.value <condition on this dead
property>)’ to the end of the WHERE clause of the SQL query.
The live properties in the sort specification are mapped to the
‘ORDER BY’ clause directly. There is currently no support for
sorting the results by a dead property. The search scope is
translated into a search condition in the WHERE clause: uri like
‘<href in scope>%’, where ‘<href in scope>’ stands for the value
of the ‘href’ XML element in the search scope.

Table 1. A sample DASL query and its corresponding SQL
query.

<d:searchrequest xmlns:d="DAV:">
 <d:basicsearch>
 <d:select>

 <d:prop>
 <d:displayname/><d:foo/><d:bar/>
 </d:prop>
</d:select>
<d:from>

 <d:scope>
 <d:href>/</d:href>

 <d:depth>infinity</d:depth>
 </d:scope>
</d:from>
<d:where>
 <d:gt>
 <d:prop><d:bar/></d:prop>
 <d:literal>2518</d:literal>
 </d:gt>
</d:where>

 </d:basicsearch>
</d:searchrequest>

SELECT
 dasl_resource.displayname,
 t.name, t.value

 FROM
 dasl_resource
 LEFT JOIN
 dasl_property t USING (serialno)
 LEFT JOIN
 dasl_property bar_t USING (serialno)

 WHERE
 (bar_t.name = 'bar' AND
 bar_t.value > 2518)

 AND
 (t.name = 'foo' OR t.name = 'bar')

5. SEARCH PERFORMANCE

In order to test the search performance of Catacomb, we ran
several tests using Cadaver [26], a WebDAV/DASL client. We
used various database loading conditions, shown in table 2,
including small numbers of resources and large numbers of
resources. The results of the tests helped us determine the
conditions that impact the search performance of the DASL server
and suggest ways to alter the algorithm to improve the search
performance.

ISBN: 1-56555-272-5 53 CTS ’04

Table 2. Database Conditions for Test

 Collection
under which
the tests were

run

Number of
resources
under this
collection

Total
number

of
resources

Number
of dead

properties

1 /repos/dasltest/
cadaver1/

78 1161 1694

2 /repos/dasltest/ 780 1161 1694

3 /repos/dasltest/
cadaver1/

78 24332 1694

4 /repos/dasltest/ 23961 24332 1694

Table 3 shows the test cases and the test results of the search
performance of Catacomb under different search conditions and
database situations.

We should take notice of the two test results in table 3,
where the searching time is exceptionally long. The first case is
when the search condition is a dead property condition,
‘Author=Joe’, and the number of the resources in the search
collection is 23961. The second case is when the search condition
is ‘Author=Joe And comments=XML’, and the number of the
resources in the search collection is also 23961.

The reason for these exceptional test results is that MySQL
works inefficiently on left-joining large sets of data. We have to
use left joins in the algorithm to construct the SQL query, because
it is necessary for the ‘OR’ operator in the search condition. But
we can alter our algorithm to use natural joins instead of left joins
under the circumstances where left joins are not necessary. Thus,
the left-join performance issue can be partially overcome with
some further work.

6. CONCLUSIONS AND FUTURE WORK

In this report, we have presented an open architecture for
performing DeltaV versioning and DASL searching operations in
the context of the Apache web server. The
WebDAV/DeltaV/DASL data models are represented using a
relational database. These tables and schema can be reused for
implementing DeltaV advanced versioning functionality by
adding several status fields. As validation of this architecture, we
have shown the design of Catacomb, the first open source
reference implementation of a DeltaV/DASL server.

The Catacomb project is an ongoing open source project that
has achieved several milestones, however the project is far from
complete. Currently, Catacomb only supports MySQL as its
backend database [23, 25]. It is desirable to support the use of
other database systems such as PostgreSQL, Oracle, Sybase,
Informix, and DB2 with Catacomb. In order to support multiple
database systems efficiently, Catacomb will have to provide an
abstract database layer as a different module. Mod_dav has a sub-
module for its repository access such as mod_dav_fs or Catacomb
modules. Like this relationship, Catacomb may have
Catacomb_mysql or Catacomb_oracle modules for database
access.

Catacomb supports only basic versioning features at this
point. In order to be a full software configuration management
framework, Catacomb should be able to support advanced
versioning functionality such as workspaces, baselining, activities,
and configuration recording features specified in the DeltaV
specification. In spite of this, however, Catacomb already
provides a rich environment for collaborative authoring of
resources.

Table 3. Search Performance Test Results

Search
Condition

Explanation Database
Situation

Avg. Time
Used

(Second)

Records
Return
ed

1 0.0442 1

2 0.0574 10

3 0.0443 1

getcontentlength
=5770

1 live
property
condition

4 0.0591 10

1 0.0546 2

2 0.0933 2

3 0.0548 2

Author=Joe 1 dead
property
condition

4 12.7452 2

1 0.0551 1

2 0.0949 1

3 0.0554 1

Author=Joe
AND
comments=XML

2 dead
property
conditions

4 12.9884 1

1 0.0445 1

2 0.0459 1

3 0.0447 1

Getcontentlength
=5770
AND
author=Joe
AND
comments=XML

1 live
property
condition
and
2 dead
property
conditions

4 0.0460 1

3 0.0452 1 Getcontentlength
=5770
AND
author=Joe
AND
comments=XML
AND
school=UCSC
AND
department=CS
AND
project=catacomb

1 live
property
condition
and
5 dead
property
conditions

4 0.0466 1

ISBN: 1-56555-272-5 54 CTS ’04

7. ACKNOWLEDGEMENTS

This project is supported by the National Science Foundation
under Contract Number NSF CAREER CCR-0133991. We also
would like to thank the Catacomb developers and user community
for their commitment and valuable feedback.

8. REFERENCES

[1] Y. Goland, E. J. Whitehead, Jr., A. Faizi, S. Carter, and D.
Jensen, "HTTP Extensions for Distributed Authoring --
WEBDAV," Internet Proposed Standard Request for
Comments (RFC) 2518, 1999.

[2] E. J. Whitehead, Jr. and Y. Y. Goland, "WebDAV: A
Network Protocol for Remote Collaborative Authoring on
the Web," Proceedings of Sixth European Conference on
Computer Supported Cooperative Work, Copenhagen,
Denmark, pp. 291-310, 1999.

[3] J. Feise, "Posties: A WebDAV Application for Collaborative
Work," Proceedings of Eleventh ACM Conference on
Hypertext and Hypermedia (Hypertext '00), San Antonio,
Texas, USA, pp. 228-229, 2000.

[4] E. J. Whitehead, Jr., "WebDAV and DeltaV: Collaborative
Authoring, Versioning, and Configuration Management for
the Web," Proceedings of Twelfth ACM Conference on
Hypertext and Hypermedia (Hypertext '01), Aarhus,
Denmark, pp. 259-260, 2001.

[5] G. Clemm, J. Amsden, T. Ellison, C. Kaler, and J.
Whitehead, "Versioning Extensions to WebDAV," Internet
Proposed Standard Request for Comments (RFC) 3253, 2002.

[6] A. Babich, J. Davis, R. Henderson, D. Lowry, S. Reddy, and
S. Reddy, "DAV Searching and Locating," Unpublished
manuscript, draft-davis-dasl-protocol-00, 2000.

[7] G. Clemm, "IETF Delta-V Working Group Home Page,"
http://www.webdav.org/deltav/, 2003.

[8] W. F. Tichy, "Design, implementation, and evaluation of a
Revision Control System," Proceedings of 6th International
Conference on Software Engineering, Tokyo, Japan, pp. 58-
67, 1982.

[9] S. Boag, "XQuery 1.0: An XML Query Language - W3C
Working Draft," http://www.w3.org/TR/xquery/, 2003.

[10] Z39.50 Maintenance Agency, "Information Retrieval
(Z39.50)," Application Service Definition and Protocol
Specification (ANSI/NISO Z39.50-1995). Bethesda, MD,
USA: NISO Press, 1995.

[11] J. Reuter, S. U. Hanssgen, J. J. Hunt, and W. F. Tichy,
"Distributed Revision Control via the World Wide Web,"
Proceedings of Sixth Software Configuration Management
Workshop, Berlin, Germany, pp. 166-174, 1996.

[12] B. Berliner, "CVS II: Parallelizing Software Development,"
Proceedings of Winter 1990 USENIX Conference,
Washington, DC, pp. 341-351, 1990.

[13] B. Behlendorf, C. M. Pilato, G. Stein, K. Hancock, and B.
Collins-Sussman, "Subversion Project Homepage,"
http://subversion.tigris.org/, 2003.

[14] R. Fielding, J. Gettys, J. Mogul, H. F. Nielsen, L. Masinter,
P. Leach, and T. Berners-Lee, "Hypertext Transfer Protocol -
- HTTP/1.1," Internet Draft Standard Request for Comments
(RFC) 2616, 1999.

[15] G. Clemm, A. Hopkins, E. Sedlar, and J. Whitehead,
"WebDAV Access Control Protocol," Internet-Draft, work-
in-progress, draft-ietf-webdav-acl-12, 2003.

[16] G. Clemm, J. Crawford, J. Reschke, J. Slein, and E. J.
Whitehead, "Binding Extensions to WebDAV," Unpublished
manuscript, draft-ietf-webdav-bind-01.2, 2003.

[17] J. Slein, E. J. Whitehead, Jr., J. Davis, G. Clemm, C. Fay,
and J. Crawford, "WebDAV Redirect Reference Resources,"
Internet-Draft, work-in-progress, draft-ietf-webdav-
redirectref-protocol-02, 1999.

[18] J. Slein, E. J. Whitehead, Jr., J. Davis, G. Clemm, C. Fay,
and J. Crawford, "WebDAV Ordered Collections Protocol,"
Internet-Draft, work-in-progress, draft-ietf-webdav-
ordering-protocol-02, 1999.

[19] Apache Foundation, "The Apache HTTPD Server Project,"
http://httpd.apache.org/, 2003.

[20] Apache Foundation, "Apache Module Registry,"
http://modules.apache.org/, 2003.

[21] G. Stein, "mod_dav: a DAV module for Apache,"
http://www.webdav.org/mod_dav/, 2003.

[22] GNU, "gdbm - GNU Project - Free Software Foundation
(FSF)," http://www.gnu.org/software/gdbm/gdbm.html, 1999.

[23] S. Kim, K. Pan, and E. Sinderson, "Catacomb Project
Homepage," http://www.webdav.org/catacomb, 2001.

[24] J. J. Hunt and W. F. Tichy, "RCE API Intro. and Ref.
Manual," DuraSoft 2000.

[25] MySQL AB, "MySQL: The World's Most Popular Open
Source Database," http://www.mysql.com, 2003.

[26] J. Orton, "Cadaver Resources,"
http://www.webdav.org/cadaver/, 2003.

ISBN: 1-56555-272-5 55 CTS ’04

http://www.webdav.org/deltav/
http://www.w3.org/TR/xquery/
http://subversion.tigris.org/
http://httpd.apache.org/
http://modules.apache.org/
http://www.webdav.org/mod_dav/
http://www.gnu.org/software/gdbm/gdbm.html
http://www.webdav.org/catacomb
http://www.mysql.com
http://www.webdav.org/cadaver/

	TITLE PAGE
	PROCEEDINGS LIST
	CTS Table of Contents
	ACROBAT HELP
	Architecture and Data Model of a WebDAV-based Collaborative System
	ABSTRACT
	Keywords
	1. INTRODUCTION
	2. BACKGROUND
	2.1 WebDAV
	2.2 DeltaV
	2.3 DASL
	2.4 Mod_dav
	2.5 Catacomb

	3. RELATED WORK
	4. DESIGN AND IMPLEMENTATION
	4.1 Database Design
	4.2 DeltaV
	4.3 DASL

	5. SEARCH PERFORMANCE
	6. CONCLUSIONS AND FUTURE WORK
	7. ACKNOWLEDGEMENTS
	8. REFERENCES

